Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The ultralong coherent networks of Si nanocrystals (NCs) via lattice‐enhanced dipole–dipole coupling and the formation of disordered arrays of phase‐correlated field hotspots are studied. Such arrays occur in structures consisting of Si NCs randomly positioned inside long strips that are periodically repeated. The theoretical results predict the formation of all‐dielectric coherent networks of Si NCs, formed via in‐phase coupling of the resonances generated by diffraction of light. Such networks are extended along the lengths of the strips while supporting high field enhancement associated with the phase‐correlated chains of field hotspots between the nanocrystals. It is shown that these phenomena occur at the wavelengths where the Rayleigh anomaly condition is satisfied. Under this condition the electric field is squeezed between two field‐impenetrable regions, causing efficient concentration of electromagnetic energy along the disordered arrays of Si NCs in each strip. The results show that these arrays act as coherently assembled units that are efficiently coupled with the lattice modes, forming highly tunable collective resonances with spectral widths less than 5 nm. These results pave the way for all‐dielectric‐tunable optical filters with very small losses and near‐perfect reflectivity and laser systems based on Si NCs.more » « less
- 
            Abstract Plasmonic hot‐electron‐assisted control of emission intensities and dynamics of CdSe/ZnS and infrared PbS quantum dots are studied. This is done by exploring the impact of Au/Si and Ag/Si Schottky junctions on the decay rates of such quantum dots when these junctions are placed in close vicinity of a Si/Al oxide charge barrier, forming metal‐oxide plasmonic metafilms. Such structures are used to investigate how metal‐dependent distributions of hot electrons and their capture via Schottky junctions can lead to suppression of the defect environments of quantum dots, offering a novel platform wherein off‐resonant (non‐Purcell) plasmonic processes are used to control exciton dynamics. These results show that Ag metafilms can enhance the emission of CdSe/ZnS quantum dots and elongate their lifetimes more than Au metafilms. This highlights the more efficient nature of Ag/Si Schottky junctions for hot electron excitation and capture. These results also show that such junctions can significantly suppress the nonradiative decay rates of PbS quantum dots at frequencies far from the plasmon resonances. These results demonstrate a field‐effect passivation of quantum dot defects via entrapment of hot electrons and control of emission intensities and dynamics of quantum dots via the nearly frequency‐independent electrostatic field of such electrons.more » « less
- 
            Abstract Localized surface plasmon resonance (LSPR) is shown to be effective in trapping light for enhanced light absorption and hence performance in photonic and optoelectronic devices. Implementation of LSPR in all‐inorganic perovskite nanocrystals (PNCs) is particularly important considering their unique advantages in optoelectronics. Motivated by this, the first success in colloidal synthesis of AuCu/CsPbCl3core/shell PNCs and observation of enhanced light absorption by the perovskite CsPbCl3shell of thickness in the range of 2–4 nm, enabled by the LSPR AuCu core of an average diameter of 7.1 nm, is reported. This enhanced light absorption leads to a remarkably enhanced photoresponse in PNCs/graphene nanohybrid photodetectors using the AuCu/CsPbCl3core/shell PNCs, by more than 30 times as compared to the counterparts with CsPbCl3PNCs only (8–12 nm in dimension). This result illustrates the feasibility in implementation of LSPR light trapping directly in core/shell PNCs for high‐performance optoelectronics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
